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Discovering aging signatures through hBehaveMAE*: 
A hierarchical masked autoencoder 
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The hBehaveMAE*  architecture processes continuous behavioural DVC time series data through a hierarchical masked autoencoder transformer framework 
(DVC-hBehaveMAE) designed to capture complex behavioural patterns across multiple temporal scales. DVC recordings from the 12 electrodes are first 
converted into spatio-temporal patches using learned linear projections with separable positional embeddings for time and spatial dimensions. The hierarchi-
cal encoder consists of multiple transformer blocks operating seuentially at different temporal resolutions: lower levels process minute-scale patterns using 
local attention to capture minute-scale behavioural dynamics, with each subsequent level building upon the previous layer's representations while employing 
global attention to model activity over longer time scales to represent long-term behavioural patterns. Query pooling attention mechanisms enable fusion 
across spatial and temporal dimensions at each hierarchical level. The self-supervised learning objective uses a block-based masking at an 80% ratio with 
hierarchical propagation, allowing the model to learn meaningful representations without requiring behavioural annotations. A single-layer transformer decod-
er reconstructs masked portions of the input sequence using L2 loss computed only on masked tokens. We hypothesized and show in box 4 that this archi-
tecture enables extraction of meaningful multiscale behavioural embeddings that allow prediction of key features such as age or strain identity. Ultimately, 
our goal is to integrate multiple data sources to extract interpretable latent features, enabling precise longitudinal genetic mapping of different aspects of 
healthspan in mice to be validated in humans with the other data layers collected in the HDP.
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Future Prospects
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Future plans to expand the explored phenotypic space of the HDP and to enhance the interpretation of the DVC-hBehaveMAE latent space and features 
include leveraging over 700 hours of single-animal video recordings across adult and old mice for pose estimation using DeepLabCut*. To extract be-
havioural syllables and identify aging patterns, we will apply Keypoint-MoSeq**. hBehaveMAE will be used to derive latent features that will be interpreted 
by associative analysis with the extracted syllables. In a similar way, Promethion metabolic cages providing over 1000 days of continuous activity and met-
abolic monitoring data will be used to extract meaningful latent features. Combined with the use of the classical HDP phenotypes and the DVC2.0 system 
for DVC-hBehaveMAE embeddings interpretation (Box 3), we predict that this approach will allow for further expansion of our latents’ biological validation 
through correlative analysis of cross-platform embeddings. This multi-modal approach will enable the study of aging and mouse behaviour through inte-
grated longitudinal analysis of healthspan trajectories across complementary behavioural measurement systems for enhanced precision. 
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Promethion metabolic cages
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The HDP: An integrated Platform for Healthspan Discovery

The Healthspan Diversity Panel represents an unprecedented longitudinal study of aging in laboratory mice, integrating continuous behavioural monitoring 
with comprehensive multi-modal phenotyping across the lifespan. Our platform combines 24/7 Digital Ventilated Cage (DVC) monitoring of over 4,000 
female mice from 82 genetically diverse inbred strains, capturing lifelong activity patterns from 2 months to 18+ months of age. A large collection of 
neurobehavioural and cardiometabolic clinical traits with direct or similar correspondence to traits measured in human biobanks such as the UKBB, is 
measured at two age ranges corresponding to adult and old ages. This continuous behavioural surveillance is complemented with systematic tissue 
collection at key developmental timepoints, enabling deep molecular profiling of over 130,000 tissue samples including brain, skeletal muscle, and 
metabolic organs. The integration of these data with longitudinal behavioural and locomotion features, extracted with classical methods and a hierarchical 
masked autoencoder from the DVC recordings, creates a unified framework to decipher the genetic architecture of healthspan. This will allow us to identify 
novel biomarkers of successful aging enabling early interception and intervention.
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The Digital Ventilated Cage (DVC) system: 
Patterns of activity are strain-specific
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The DVC home caging system utilizes capacitive sensor technology to capture continuous mouse activity without disrupting natural behaviours. Each 
DVC board contains 12 capacitive electrodes placed beneath the cage, detecting electrical field perturbations from mouse movement at a native resolu-
tion of 4Hz, subsequently aggregated into 1-min intervals to get sensor relative activation time percentages. The system is coupled to a module continu-
ously measuring environmental parameters that could affect mice behaviour, including environmental noise and human presence in proximity of the 
cages. This non-invasive approach applied to the HDP results in a total of over 170 million timepoints (>40 billion timepoints at native resolution), corre-
sponding to over 320 years of cumulative recordings across the entire mice lifespan in over 190 cages. Measuring continuous group locomotion activity  
pattern enables population-scale behavioural phenotyping with standardized environmental conditions. The high longitudinal throughput of the DVC ap-
plied to a genetic reference population provide an unprecedented window to study natural behaviour during aging. Replication and differences in group 
activity patterns in independent cages within a strain and across strains respectively provide a strong indication of genetic determination of activity.  Be-
cause of the very complex nature and high dimensionality of those data, we introduce here a deep-learning analysis framework complementing classi-
cal approaches.
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Biological Interpretation

HDP embeddings recapitulate phenotyping features

BXD62
0.0

0.2

0.4

0.6

0.8

1.0

BXD44

BXD63

n = 82
mean: 129.6
median: 131.3

CC (20)
BXD (28)
Other classical
inbred strains (34)

Strain
subfamilies

R
M

S
E

 [d
ay

s]

80

100

120

140

160

180

200

BUB/BnJ

BXD60

Chronological age prediction

   Features  Accuracy

Strain Identity             56.6%*

  Day/Night            In Progress...

          ...

*often mispredicted as another 
genetically similar strain

UMAP-1 UMAP-1

A
ge

 [d
ay

s]

550

500

450

400

350

300

250

Level 1 (5 mins) Level 5 (12 hrs)

Strain PWD/PhJ | 2 cages

(...)
other levels

UMAPs of unsupervised learnt embeddings show patterns of age separation

Correct strain: BXD62
Misspredicted as [%]:

C57BR/cdJ
C57L/J

C57BL/10J
C57BL/6J

C57BL/6NJ

BXD55
BXD89
BXD34
BXD51
BXD69
BXD84

BXD102
BXD81
BXD67
BXD70
BXD74
BXD60
BXD79
BXD48
BXD49
BXD65

A/J

BXD71
BXD73

PANCEVO/EiJ
PWK/PhJ
CAST/EiJ

SKIVE/EiJ
CC025/GeniUnc

JF1/MsJ
CAROLI/EiJ

PWD/PhJ
LEWES/EiJ

PERC/EiJ
CC027/GeniUnc
CC019/TauUnc

WSB/EiJ
MSM/MsJ

CC011/Unc
CC003/Unc
CC042/Unc
CC007/Unc

CC040/TauUnc
CC005/TauUnc

CC043/GeniUnc
CC004/TauUnc

CC061/GeniUnc
CC006/TauUnc

CC002/Unc
CC078/TauUncJ

CC001/Unc
CC033/GeniUncJ
CC012/GeniUnc

NZW/LacJ
CBA/J

C3HeB/FeJ
C3H/HeJ

C3H/HeOuJ
CC051/TauUnc
CC059/TauUnc

NON/ShiltJ
BUB/BnJ

FVB/NJ
LG/J
SM/J

BALB/cJ
BPL/1J

129S1/SvImJ
BPH/2J
BPN/3J
DBA/1J
DBA/2J
BXD62
BXD50
BXD44
BXD63
BXD75
BXD64
BXD61
BXD95
BXD45
BXD56

Our hierarchical masked autoencoder learns interpretable behavioural representations across multiple temporal scales. UMAP visualization of various 
levels reveal a clear age separation of input data chunks (3 days of recordings), providing a first indication that unsupervised learning from movement 
data might recapitulate key phenotypic features. To quantify this hypothesis, chronological age prediction achieves a mean absolute error of about 4 
months (varying between 2 months and 6 months), while strain classification reaches 56.6% accuracy across 82 genetically diverse backgrounds. 
Inspection of misclassified strains revealed that errors often occur between genetically similar strains. This is depicted in the example above using a 
preliminary HDP genetic tree. To better represent biological features occurring on a long time scale, we are optimizing the DVC-hBehaveMAE frame-
work to enable training and embedding extraction after training on much larger data chunks (>= 4 weeks vs 3 days). Preliminary inspections of test 
runs show superior performances in this case, although training performed over an aggregation of 3-days already seems to capture meaningful rela-
tionships through behavioural patterns and validates the biological relevance of learned representations.

• Current Results: 3-day aggregated time periods show promising aging prediction performance
• Observed: Better training & prediction performance on longer time periods → Testing 4-week aggregation
• Hypothesis: 4-week windows will enable superior capture of gradual aging processes across hierarchical timescales

Core Hypothesis: Longer Data Chunks → Better Capture Aging

*DeepLabCut: Mathis, Alexander, et al. ‘DeepLabCut: Markerless Pose Estimation of User-Defined Body Parts with Deep Learning’. Nature Neuroscience
**Keypoint-Moseq: Weinreb, Caleb, et al. ‘Keypoint-MoSeq: Parsing Behavior by Linking Point Tracking to Pose Dynamics’. Nature Methods
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*hBehaveMAE: Stoffl, Lucas, et al. ‘Elucidating the Hierarchical Nature of Behavior with Masked Autoencoders’. Computer Vision – ECCV 2024, Springer Nature Switzerland, 2025 
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• The HDP is a comprehensive multi-modal resource to model behavioural activity of mice

• The DVC data captures meaningful phenotypic and genetic features through activity recordings

• DVC-hBehaveMAE is a powerful way to hierarchically dissect complex longitudinal data

Conclusion
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